NARROW SHEATH1 functions from two meristematic foci during founder-cell recruitment in maize leaf development.
نویسنده
چکیده
The narrow sheath duplicate genes (ns1 and ns2) perform redundant functions during maize leaf development. Plants homozygous for mutations in both ns genes fail to develop wild-type leaf tissue in a lateral domain that includes the leaf margin. Previous studies indicated that the NS gene product(s) functions during recruitment of leaf founder-cells in a lateral, meristematic domain that contributes to leaf margin development. A mosaic analysis was performed in which the ns1-O mutation was exposed in hemizygous, clonal sectors in a genetic background already homozygous for ns2-O. Analyses of mutant, sectored plants demonstrate that NS1 function is required in L2-derived tissue layers for development of the narrow sheath leaf domain. NS1 function is not required for development of the central region of maize leaves. Furthermore, the presence of the non-mutant ns1 gene outside the narrow sheath domain cannot compensate for the absence of the non-mutant gene within the narrow sheath domain. NS1 acts non-cell autonomously within the narrow sheath-margin domain and directs recruitment of marginal, leaf founder cells from two discrete foci in the maize meristem. Loss of NS1 function during later stages of leaf development results in no phenotypic consequences. These data support our model for NS function during founder-cell recruitment in the maize meristem.
منابع مشابه
The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems.
The narrow sheath (ns) phenotype of maize is a duplicate factor trait conferred by mutations at the unlinked loci ns1 and ns2. Recessive mutations at each locus together confer the phenotypic deletion of a lateral compartment in maize leaves and leaf homologs. Previous analyses revealed that the mediolateral axis of maize leaves is comprised of at least two distinct compartments, and suggest a ...
متن کاملThe narrow sheath duplicate genes: sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development.
The narrow sheath mutant of maize displays a leaf and plant stature phenotype controlled by the duplicate factor mutations narrow sheath1 and narrow sheath2. Mutant leaves fail to develop a lateral domain that includes the leaf margins. Genetic data are presented to show that the narrow sheath mutations map to duplicated chromosomal regions, reflecting an ancestral duplication of the maize geno...
متن کاملThe maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain.
The maize mutant narrow sheath (ns) displays a leaf shape and plant stature phenotype that suggests the preprimordial deletion of a leaf domain. The ns mutant phenotype is inherited as a recessive, duplicate-factor trait, conditioned upon homozygosity for each of the two unlinked mutations narrow sheath-1 (ns1) and narrow sheath-2 (ns2). Mutant leaves are missing a large domain including the le...
متن کاملLaser Microdissection of Narrow Sheath Mutant Maize Uncovers Novel Gene Expression in the Shoot Apical Meristem
Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially probl...
متن کاملA WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development.
YABBY and WUSCHEL-LIKE HOMEOBOX (WOX) genes have been shown to play important roles in lateral organ formation and meristem function. Here, we report the characterization of functional relationship between rice (Oryza sativa) YAB3 and WOX3 in rice leaf development. Rice YAB3 is closely related to maize (Zea mays) ZmYAB14 and Arabidopsis (Arabidopsis thaliana) FILAMENTOUS FLOWER (FIL), whereas r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 127 21 شماره
صفحات -
تاریخ انتشار 2000